
University of Saskatchewan 


Proceedings of the Twelfth 

Annual 


Graduate Symposium 

on Computer Science 


April 11, 2000 

Department of Computer Science 
Saskatoon , Saskatchewan, Canada 



A Generalized Cellular Texture Basis Function 

Xuejie Qin 

Department of Computer Science 


University of Saskatchewan 

57 Campus Drive 


Saskatoon, SK. S7N 5A9 

Canada 


E-mail: xuq4l4 @cs.usaskca 


Supervisor: Dr. Herbert Yang 


Abstract 

Texture basis function plays a very important role in procedural texturing. In the literature, 
there are only two texture basis functions proposed, namely Perlin's noise and Worley's noise. 
In this paper, a new generalized cellular texture basis function is proposed. This new texture 
basis function is a generalization of Worley's noise. The proposed basis function can be used 
in procedural texturing algorithms to generate some interesting texture patterns, such as 
crumpled wrinkle, wood, marble, cloud, flame and cell-like patterns. 

1. Introduction 

Texturing, a process of generating textures on the surface of 3D objects, is an important and active research 
topic in the field of computer graphics and image processing. In the literature, various texturing techniques have 
been proposed. All of these techniques can be classified into two categories: non-procedural and procedural. 

In non-procedural techniques, synthesized textures are generated after analyzing or mapping input textures. 
Some of the successful models include texture mapping [Blinn, 1976; Bunker, 1984; Dungan, 1978; Green, 
1986], and statistical and random models [Cross, 1983; Bonet, 1997; Heeger, 1995]. In procedural techniques, 
various procedures (algorithms) are developed to generate textures without requiring input textures. Textures 
are generated directly on the surface of 3D objects from calling a procedure. By defining different procedures, 
different kinds of textures can be generated. Some of the successful procedural techniques include shade tree 
[Cook, 1984], pixel stream editor [Perlin, 1985], reaction-diffusion system [Turk, 1991; Witkin, 1991], and a 
genetic texture-programming system [Sims, 1991]. 

Compared with non-procedural techniques, procedural techniques are extremely fast, highly realistic and 
storage-efficient. Nonetheless, there are still some challenging problems unsolved or ill solved in those 
procedural techniques. One of the challenging problems is to define some well-behaved texture basis functions 
so that they can be called by texturing procedures in different ways to generate various kinds of textures. In the 
literature, there are only two basis functions proposed, namely Perlin's noise [Perlin, 1985] and Worley's noise 
[Worley, 1996]. 

In this paper, a new generalized cellular texture basis function is proposed. This new basis function is a 

generalization of Worley's noise [Worley, 1996]. Worley's noise is a linear combination ofn i 'h closest feature 
point basis functions, whose values at a given point in the space are determined by that point and the feature 
points around that point. The proposed basis function extends the Worley's noise by including a non-linear 

combination of those i'h closest feature point basis functions. We found that using this generalized basis 
function will generate more interesting texture patterns than Worley's noise. In addition, this basis function can 
be used as a complement of Perlin's noise. Wood., marble, clouds and flame can be generated by using this new 
generalized basis function. In some cases, the textured images generated by the proposed basis function look 

153 



Xuejie Qin 

more interesting and realistic than those generated by Perlin's noise. Experimental results are presented to show 
these facts . 

The remainder of this paper is organized as follows. The next section presents the literature review of previous 
works on texturing, focuses on procedural texturing. Section 3 presents the proposed generalized cellular texture 
basis function and the algorithm to compute this basis function. In section 4, we describe some applications of 
the proposed basis function in procedural texturing, and present some experimental results. Finally, conclusions 
are drawn in section 5. 

2. Previous Works on Texturing 
The work in this paper is closely related to texturing in the field of computer graphics. Texturing is a process of 
creating textures on the surface of 3D objects. The purpose of texturing is to add visual realism to computer 
synthetic images. Techniques for texturing can be classified into two categories: non-procedural and procedural. 

2.1 Non-Procedural Texturing 

In non-procedural approach, two different kinds of techniques may be used to generate synthesized textures: 
texture mapping techniques and texture analysis/synthesis techniques. With texture mapping techniques, input 
texture patterns are mathematically transferred first onto the surfaces of 3D models that are used to represent 
real world scenes. Then, the textured 3D surfaces are perspectively projected onto the output image viewing 
plane. Texture tiling [Dungan, 1978], cell texturing [Bunker, 1984], reflection mapping [Blinn, 1976] and 
environment mapping [Green, 1986] are some of the specific names to describe variations of the texture 
mapping techniques. 

With texture analysis and synthesis techniques, an input texture patch is first analyzed, then texture information 
is characterized by a set of parameters, and finally the synthesized texture is generated based on those 
parameters. Some of the successful texture analysis and synthesis models include Markov Random Field texture 
models [Cross, 1983], multiresolution sampling procedure [Bonet, 1997] and pyramid-based texture analysis 
and synthesis [Heeger, 1995]. 

2.2 Procedural texturing 

Procedural texturing has been proven to be a powerful approach to add visual detail to the surface of rendered 
objects in image synthesis. In this approach, textures are generated directly on the surface of 3D objects from 
calling a procedure, which may call other procedures. By defining different procedures, different kinds of 
textures can be generated. . 

Since the middle of 1980s, procedural techniques for generating realistic textures, such as marble, wood, stone, 
water, smoke, clouds, flame and other natural materials have gained widespread use in the field of computer 
graphics. Some useful procedural texturing techniques are summarized below. For a complete discussion of the 
procedural texturing techniques, we refer the readers to [Ebert, 1998]. 

Cook in [Cook, 1984] described a system called shade trees, which was one of the first systems in which it was 
convenient to generate procedural textures during rendering. Shade trees enable the use of different tree­
structured shading models for different surfaces such as copper, wood, grass, and etc. The input parameters to 
the shading models, called appearance parameters, can be manipulated procedurally. In this way, shade trees 
make it possible to use textures to control any part of the shading calculation. Color and transparency textures, 
reflection mapping, bump mapping, displacement mapping and solid texturing can all be implemented using 
shade trees. 

Perlin in [Perlin, 1985] described a complete procedural texture generation language (Pixel Stream Editor) and 
laid the foundation for the most popular class of procedural textures in use today, in particular those based on 
noise, a stochastic texture generation basis function. By using his noise basis function, Perlin has generated very 
convincing representations of clouds, fire, water, stars, marble, wood, rock, soap films, and crystal. 

154 



A Generalized Cellular Texture Basis Function 

Turk in (Turk, 1991] and Witkin in (Witkin, 1991] described synthesis texture models inspired by reaction­
diffusion. Reaction-diffusion is a process in which two or more chemicals diffuse at unequal rates over a surface 
and react with one another to form stable patterns such as spots and strips in the skins of animals. 

Sims in (Sims, 1991] describes an interactive system to apply evolutionary techniques of variation and selection 
to create complex simulated structures, textures, and motions for use in computer graphics and animation. In his 
system, procedural textures are represented as LISP expressions. By interactively selecting among the resulting 
textures, the user of the system can direct the simulated evolution of a texture in some desired direction. 

Worley in (Worley, 1996] proposed a cellular texture basis function, called Worley's noise, which can be used 
as solid texturing primitive to generate textured surfaces resembling flagstone-like tiled areas, organic crusty 
skin, crumpled paper, ice, rock, mountain ranges, and craters. Worley's noise is a linear combination of n if" 
closest feature point basis functions, whose values at a given point in the space are the distances from the point 
to the feature points around that point. 

2.3 Non-Procedural Texturing versus Procedural Texturing 

Since the non-procedural texturing depends on input texture, the synthesized texture can be predicted and 
controlled as expected, while on the other hand, the synthesized texture is at most as good as the input texture. 
In addition, each model may only handle some specific kinds of textures, and may not work for other kinds of 
textures. 

Compared with non-procedural techniques, procedural techniques have the advantages of extremely fast, high 
quality of realism and storage efficiency. Nonetheless, procedural approach has its own disadvantages. In 
general, it is difficult to develop a texturing procedure; there is no general procedure for all or at least some 
kinds of textures; and the resulting texture is difficult to predict and measure with a set of parameters. 

3. The Generalized Cellular Texture Basis Function (GCTBF) 
Texture basis function plays a very important role in procedural texturing. It can be used as a solid texturing 
primitive for building different kinds of textures in various texturing procedures. Unfortunately, there are only 
two texture basis functions proposed in the literate, namely Perlin's noise (Perlin, 1985] and Worley's noise 
Worley [Worley, 1996]. In this section, a new generalized cellular texture basis function is first formularized, 
and then the algorithm to compute this basis function is given. 

3.1 Mathematical Formulation 

The generalized cellular texture basis function, denoted by GCTBF, is a scalar function whose domain is the 

whole 3D space and its range is the set of non-negative real numbers, i.e . . GCTBF: 9\3 ~ 9\+ u {O}. For a 

given point x in 9\3, GCTBF(x) is defined as: 

GCTBF(x) =GCTBF(F; ,F2 , ••• ,FJ(x) =~>;F;(x) + '~>ij1\(x)Fj(x) (1) 
i=-l i,)=1 

where n, C;, Clf are constants known as priors for i,j = 1,2,3, ... , n . 

In the above formula, the function 1\ is called the if" closest feature point basis function, whose value at x 

measures the distance from x to the t" closest feature point around x. For example, F.. (x) measures the 

distance from x to the first closest feature point, F; (x) measures the distance from x to the second closest 

feature point, and so on. It is easy to see that 1\ is a continuous function of x, and that F.. ::; F..+I for 

i = 1, 2, ... , n . The feature points around x are generated by a stochastic distribution function, such as Poisson 

155 



Xuejie Qin 

distribution, Gamma-type distribution. We will discuss in more detail on how to generate the feature points 
around x in next subsection. 

If we let cij =0 in (1), then GCTBF(x) =!c,F,(x), this is the Worley's basis function (Worley's noise) 
;::1 

[Worley, 1996], which is a linear combination of F;, F 2' .•. , Fn' This implies that the proposed new texture 

basis function is a generalization of Woley's basis function, since GCTBF(x) includes a non-linear 

combination of F;Fj for i, j = 1,2, ... , n. Mathematically, the non-linear term F,F has more complex
J 

behaviour than the linear term F;. Thus, using this new generalized basis function may generate more 

interesting texture patterns. In other words, the set of texture patterns generated by the new generalized basis 
function is a superset of the set of texture patterns generated by using Worley's basis function. Experimental 
results are presented in section 4 to show this fact. 

In the formula (1), the coefficients c, ,cyare known as priors. Theoretically, they can be any value of a real 

number. In the actual implementation of this basis function in this paper, we leave the task of setting values for 
cpcy to the texturing procedures that call this basis function. For computation efficiency reason, we restrict the 

value of n in (1) up to 4. 

3.2 Algorithm to Compute GCfBF 

From (1) in the previous section, for a given point x in the space, the value of GCTBF at x is easy to 

calculate if we know the value of F, at x for i = 1, 2, ... n . By definition, F, (x) is the distance from x to the 

i'h closest feature point around x . If we could locate all the feature points around x , then it is easy to calculate 
F;(x) . In this subsection, we first present the general algorithm, then the detailed algorithm to compute F;(x) . 

3.2.1 General Algorithm to Compute F;(x) 

As in [Worley, 1996], we generate the feature points around x by using Poisson distribution function. By this 
distribution function, the probability of m feature points occurring in a unit cube is given by the following 
formula: 

(3) 

where A measures the mean density of feature points per unit cube, which is known as a prior, say A=4 . 

Using formula (3) , we pre-compute the values of p(m) for m =0,1,2, ... , M , where M is the maximum 

number of feature points known as a prior, for example M =50. Then, we store the values of p(m) in a 

distribution look-up table. 

F or each point x in 9\ J , we use a unit cube to surround x. The base of the unit cube, which is defined as the 
coordinates of the bottom-left-front vertex of the cube, is equal to the integer part of the coordinates of x. Here 
we assume a left-handed coordinate system. We use the base of the unit cube to define a seed to initialize a fast 
random number generator. We generate a random number r using the already initialized random number 
generator, and look up r in the distribution look-up table. The value of m such that the corresponding p(m) is 

the closest one to r will be the number offeature points required in the unit cube surrounding x . 

After the number of feature points is calculated, the location of feature points must be calculated by using the 
same initialized random number generator; this is crucial to ensure that the algorithm works correctly to 
compute F;(x) . In fact, the coordinates of each feature point in the cube can be computed by calling the same 

initialized random number generator three times. With the locations of all feature points in the cube computed, 

156 



A Generalized Cellular Texture Basis Function 

the calculation of the distances from those feature points to x is easy . To get F, (x) , F2 (x), ... , Fn (x) , we just 
sort the distances into increasing order. 

The algorithm should not stop at this point. Since the distance from a feature point to x may reach .J3 in the 
extreme case, a feature point in the neighboring cube may even be closer 10 x than those already computed. 
Thus the algorithm should keep going to process the other 26 neighbonng cubes. For each of the neighboring 
cubes, the algorithm just repeats the same steps described before to compute the number and the locations of 
feature points but using a different seed for the random number generator based on that cube. The distances 
from the feature points to x are then computed, and the list of F,(x). F(x). .. .. F.(x) is finally updated using a 

simple sorting algorithm. Figure 1 shows in three neighboring cubes the relationship between the point x, the 
feature points, and F,(x), F2(x), .. . , Fn(x) around x with n = 4. 

Figure 1: The relationship between the point x, the feature points, and F,(x) in the three neighboring 

cubes around x for i =1, 2, 3, 4 . The point x is represented by a red dot; the feature points are 

represented by green dots. 

3.2.2 Detailed Algorithm to Compute F,(x) 

For a given point x in the space, we use six steps to compute F, (x). The ftrst step is the initializations of the 

distribution look-up table and the permutation table that will be used in later steps. These two tables are pre­
computed only once and stored as arrays. The steps from two to six are the main parts of the algorithm used to 
compute F,(x) for i = 1,2,oo.,n . In this algorithm, we assume that a left-handed coordinate system is used. The 

detailed algorithm is given as follows. 

1. 	 Initialization and pre-computation. 
• 	 Pre-compute the values of p(m) , for m=0,1,2, oo., M, where p(m)=;{m/(m! e )' ) , .,1,=4, and 

M =50. Store them as a Possion distribution look-up table. Name it as DistributionTable[M]. 

• 	 Pre-compute a permutation array of size 216 
, each element of the array is a random number between ° 

and 216 -1 inclusively. Name it as PermutationTable[N] , where N =2 16 
• 

2. 	 For each point x =(xl'x2'x
3 

) in the space, defme a unit cube Cx containing x. The base of Cx is 

computed by base(CJ = (jloor(xi ), jloor(x2),jloor(x))). For example, if x =(1.1,2.3,3.4), then 

base(CJ=(1,2,3) . 

3. 	 Compute the number of feature points in cube C 
x 

using the pre-computed Possion distribution look-up 

table. 
• Compute a seed s for a fast random number generator using the pre-computed permutation table. 

157 



Xuejie Qin 

(1) TABMASK = 216 -l. 

(2) PERM(x) =PermutationTable[x & TABMASK] , where & is the bitwise and operator. 

(3) INDEX(xPX2'X]) = PERM(XI +PERM(x2+PERM(xJ)). 

(4) XI = xcomp(base(ex )), x 2 = ycomp(base(e, )), x] = zcomp(base(e,)) 

(5) s =INDEX(xp x2, x]) 

• 	 Initialize a random number generator using seed s. 
• 	 Generate the first random number r using the above initialized random number generator. 
• 	 Look up r in the table DistributionTable[M] . The value of m, such that p(m) is the closest one to 

r in DistributionTable[M] is the number offeature points required in ex' Return the value of m . 

4. 	 Compute the location of the m feature points in the cube ex' For each of the feature points, compute its 

xyz coordinates using the already initialized random number generator. These coordinates are relative to 

the base of ex' 

5. 	 For each of the feature points, compute its distance to x, keep a sorted list of the n smallest distances 
F.. (x), F2 (x), ... , Fn (x) , where n is known as a prior, for example n = 4. 

6. 	 For each of the 26 neighboring cubes of ex' repeat step 2 to step 5, and update the list of 

F.. (x), F2 (x), ... , Fn (x) at the end of step 5. 

4. Applications in Procedural Texturing Using GCTBF 
The new proposed cellular texture basis function can be used as a solid texturing primitive for building various 
kinds of textures in procedural texturing. As with Perlin's noise, mapping the value of this basis function at a 
surface point into a color and normal-displacement can provide visually interesting and impressive effects. 
Combining color or bump mapping with fractal technique, a variety of texturing procedures can be implemented 
based on this new basis function to generate wrinkle, wood, marble, cloud, terrain, and flame-like textures. In 
this paper, the texturing procedures are implemented using RenderMan Shading Language (SL). We also 
implement the new basis function in C++ and link them as dynamic shared objects (DSO) so that we can call it 
as a SL built-in function in surface or displacement shaders written in Shading Language. In the rest of this 
section, some applications using this basis function in procedural texturing are described, and experimental 
results are presented. 

4.1 	 Using GCfBF in Color Mapping 

Color mapping is used to map a number into a color. The commonly used color mappings are the spline 

function and the mix function. The value of mix(cp c2,t) at t is equal to (l-t)*c1 +t*c2 with tE [0,1], 

where CI,C2 are colors known as priors. To map a surface point to a color, we can first use GeTBF to map that 

surface point into a number, then use a color mapping to map that number into a color. For example, for a given 
point x on the surface of a 3D synthetic object, the color at x, denoted pattern(x), can be determined by the 

formula: 

pattem(x) =color spline(clamp(GeTBF(x),0,1),cp c2, ... ,cJ (4) 

In the above formula, c
P 

c2, ... ,cn are given colors. The function clamp(s,a,b) returns a if s is less than a, b 

if s is greater than b; otherwise it returns s. To obtain different texture patterns, we can use different values 

for n and define different color values for cp c2""'cn , Note that some C; s may have the same value. For 

example, if we let n = l3, and c = c = c = c = C = (0.25,0.25,0.35), c] = c. = C = (0.1 0, 0.1 0, 0.30),
i 	 2 6 7 l2 s 

= c9 =(0.05,0.05,0.26), CIO =C = CIJ = (0.03,0.03,0.20), then we can generate blue-marble-like patterns on Cs 	 II 

158 

http:0.03,0.03,0.20
http:0.05,0.05,0.26
http:0.25,0.25,0.35


A Generalized Cellular Texture Basis Function 

the surface of objects. As a color mapping, the mix function can be used in a similar way as spline function. An 

example of using mix can be found in example 2 in section 4.3. 

Figure 2 shows some patterns generated using (4) with n = 13, and the values of cp c2 
,,,,,c

n 
are given as 

before. To compare, we present the corresponding pattern generated by Perlin's noise. Figure 2 also shows that 
patterns generated using non-linear combinations of F; are more interesting than patterns generated by linear 

combination of F; for i = 1,2, ... , n . 

4.2 Using GCfBF in Bump Mapping 

Bump mapping technique was first introduced by Blinn in [Blinn, 1978]. This technique involves 

modifYing the surface normal vectors to give the appearance that the surface has bumps or indentations. As 

with Perlin's noise, the new basis function can also be used in bump mapping to create bumps on the 

surface of synthetic objects. For a given point x on the surface, the normal N at x can be modified using 

an algorithm like this: 


bump(x) = abs(0.5 - GCTBF(kx» 


x =x - bump(x) *normalize(N) (5) 


N = calculationnormal(x) 


Figure 3 shows an example of creating bumps using (5) with k =3 (the last four images). To compare, we 

also present the original image without bumps (the first image), and the one with bumps generated by 
Perlin's noise (the second image). 

43 Using GCfBF in Fractal 

Fractal technique offers a very easy way to generate geometrically complex objects like crumpled wrinkle, 
cloud, flame, water and terrain. The complexity arises simply through the repetition of form over some range of 
scale. Mathematically, we get a simple fractal when we take a basis function, scale it down, and add it again to 

the same function. For example, if we let sin(p) be a basis function of p, then !(P) = ! (sin(l'p) / n is a 
i=O 

fractal of p based on sin(p). In the expression, n is called octaves, which tells exactly how many times we 

should scale and add the basis function into itself; and I is called lacunarity, which tells how much we should 
scale the basis function for each octave, a typical value for I is 2. The composite of two fractal functions or a 
fractal with a simple function is also a fractal. For a complete discussion of fractal, the reader is referred to 
[Ebert, 1998]. 

Combining fractal with color mapping or bump mapping when using GCTBF in procedural texturing, we can 
generate even more interesting textures such as crumpled wrinkle, cloud, flame, water, and terrain. In the rest of 
this subsection, we present two examples to demonstrate how to combine fractal with color or bump mapping 
when using GCTBF as a solid texturing primitive. 

Example 1: Combining fractal with bump mapping to generate crumpled wrinkles. To create crumpled 
. wrinkles on a surface, we can use a fractal version ofbump mapping in the algorithm described in (5), which is 

given in (6) below. Figure 4 shows some images generated using (6) with GCTBF = F; - F.. - F..F.. and 

octaves = 0,1,2,3,4 respectively. 

159 



Xuejie Qin 

fractal(x) =ocfsabs(0.5 - GCTBF(2; x))/ 2; 
;=0 

bump(x) = fractal(x) * fractal(x) * fractal(x) (6) 


x =x -bump(x) *normalize(N) 


N =calculationnormal(x) 


Example 2: Combining fractal with color mapping to generate cloud. For a given point x on a surface, the 
cloud-like pattern, denoted cloud Pattern (x) , can be given by the following algorithm: 

skycolor =(0.15,0.15,0.60) 

coludcolor =(1.00,1.00,1.00) 
oclo\'t!S .1 (7)

fractal(x) = L --;-((1- 2 *GCTBF(2' x)) *smoothscale(2; x)) 
1=0 2 

coludPattern(x) =mix(skycolor, cloudcolor,smmothstep(O, 1, fractal(x))) 

In the above c10ud-1ike-pattern-generating algorithm, the function smoothscale(p) has a complex form and its 

value at the point p depends on the differential surface area at p. For more information on this function, we 

refer the reader to chapters 10-13 in the book [Ebert, 1998]. The mix function is the actual color mapping used 
in this algorithm, whose definition is given in section 4.1. The smoothstep(min,max,t) function returns 0 if t 

is less than min, 1 if t is greater than or equal to max, and performs a smooth Hermite interpolation between 0 
and 1 in the interval min to max. Figure 5 shows some cloud patterns generated using the algorithm described in 
(7) . To compare, we also present the corresponding cloud pattern generated by Perlin's noise in Figure 5. 

Before we end this subsection, we give three synthetic images textured by using GCTBF, as shown in Figure 6. 
Figure 6(a) shows a scene with a vase placed on a wooden table under a cloudy sky. The marble-like patterns on 
the vase, the wood patterns on the table and the clouds in the sky are generated by three different texturing 
procedures (surface shaders written in RenderMan Shading Language) that call GCTBF. Precisely, the marble­
like pattern, the wood pattern and the cloud pattern used in the scene are generated by 

4 4 

I(-l); F, + I (-IY+) F,F) , F; -FIF;, and F;F2 +F2F) respectively. Figure 6(b) shows a scene with a tree 
;=1 i,)=1 

trunk placed on a rocky ground under a cloudy sky. The wood pattern on the tree trunk and the cloud pattern in 
the sky are generated by F) - FJFJ and F; respectively. The rocky ground is generated by the technique 

described in (6) of example 1 with GCTBF = F2 - F; - F;F; and octaves = 4. Figure 6(c) shows a simple 

scene of flame. This scene is rendered using a single patch textured by a flame-texturing procedure that calls 
GCTBF with GCTBF(x) =F; (x) . This flame-like texture is actually generated by combining fractal technique 

with spline color mapping. 

5. Conclusion 
Texture basis function plays an important role in procedural texturing. In the literature there are only a couple of 
texture basis functions proposed, namely Perlin's noise and Worley's noise. In this paper, a new generalized 
cellular texture basis function, called GCTBF, is proposed. This basis function is a generalization of Worley's 

noise. Worley's noise is a linear combination of n it' closest feature point basis functions, whose values at a 
given point in the space are the distances from that point to the feature points. The new basis function extends 
Worley's noise by including a non-linear combination of those it' closest feature point basis functions. 
Mathematically, the non-linear terms have more complex behaviors than the linear terms. Experimental results 
have also demonstrated this fact. 

The new basis function Can be used as a solid texturing primitive for building various kinds of textures in 
procedural texturing. There are three ways in using GCTBF in the application of procedural texturing: color 

160 

http:1.00,1.00,1.00
http:0.15,0.15,0.60


A Generalized Cellular Texture Basis Function 

mapping, bump mapping and fractal. By combining color or bump mapping with fractal technique, a variety of 
texturing procedures can be implemented based on this new basis function to generate crumpled wrinkle, wood, 
marble, cloud, water and flame-like textures. 

Reference 
[Blinn, 1976] J.F. Blinn and M.E. Newell. Texture and Reflection in Computer Generated Images. CACM 19, lO(May), 

pp.542-547. 


[Blinn, 1978] J.F. Blinn. Simulation of wrinkled surface. Computer Graphics, 12(3), pp.286-292, July 1978. 


[Bonet, 1997] J.S. Bonet. Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Images. Computer 

Graphics, pp.361-368, 1997. 


[Bunker, 1984] M. Bunker, R. Economy and J. Harvey. Cell texture - Its Impact on Computer Image Generation. In 

Proceedings of the Sixth Interservice.lIndustrial Association, Washington, DC, ppI49-155, October 1984. 


[Cook, 1984] R.L. Cook. Shade Tress. Computer Graphics, 18(3), pp.223-231, July 1984. 


[Cross, 1983] G.c. Cross and A.K. Jain. Markov Random Field Texture Models. IEEE Transactions on Pattern Analysis 

and Machine Intelligence 5, pp25-39, 1983. 


[Dungan, 1978] W. Dungan, A. Stenger and G. Sutty. Texture Tile Considerations for Raster Graphics. Computer Graphics, 

12(3), pp.130-134, August 1978. 


[Ebert, 1998] D.S. Ebert, F.K. Musgrave, K.P. Peachey, K. Perlin and S. Worley. Texturing and Modeling: A Procedural 

Approach. Academic Press, 1998. 


[Francos, 1993] J.M. Francos, A.Z. Meriri and B. Porat. A Unified Texture Model Based on a 2D Wold-Like 

Decomposition. IEEE Transactions on Signal Processing 41, pp.2665-2678, 1993. 


[Green, 1986] N. Green. Environment Mapping and Other Applications of Worid Projection. IEEE Computer Graphics 

Application, Nov. pp.21-29, 1986. 


[Heeger, 1995] AJ . Heeger and J.R. Bergen. Pyramid-Based Texture Analysis/Synthesis. Computer Graphics, pp.229-238, 

1995. 


[Lewis, 1984] J.P. Lewis. Texture Synthesis for Digital Painting. Computer Graphics, 18(3), pp.245-252, 1984. 


[Perlin, 1985] K.Perlin. An Image Synthesizer. Computer Graphics, 19(3), pp.187-296, July 1985. 


[Pixar, 1989] Pixar. The RenderMan Interface: Version 3.1. Pixar, San Rafael, California, 1989. 


[Rao, 1990] A.R. Rao. A Taxonomy for Texture Description and Identification. Randing, Springer-Verlag, 1990. 


[Schachter, 1979] BJ. Schachter and N. Ahuia. Random Pattern Generation Processes. Computer Graphics and Image 

Processing, 10, pp.95-114, 1979. 


[Sims, 1991] K. Sims. Artificial Evolution for Computer Graphics. Computer Graphics, 25(4), pp. 319-328, July 1991. 


[Turk, 1991] G. Turk. Generating Textures for Arbitrary Surfaces Using Reaction-Diffusion. Computer Graphics, 25(3), 

pp.289-298, July 1991. 


[Witkin, 1991] A. Witkin and M.Kass. Reaction-Diffusion Textures. Computer Graphics, 25(3), pp.299-308, July 1991. 


[Worley, 1996] S. Worley. A Cellular Texture Basis Function. Computer Graphics, pp.291-294, July 1996. 


Acknowledgment 
I would like to thank Dr. Herbert Yang for his patient supervision of this paper. 

161 



Xuejie Qin 

,,' , 

- ~ & F ~ 

,- " 
"1 ~ \ "" 

'. "... ., ,;.. .­

: !>" '" ,... 

Perlin Pi Fz - FIPi FzFz - FIPi F, • F! - F,F4 F3F3 + F3F, - F,F, 

Figure 2: An example of using GCTBF in color mapping. The first pattern is generated by Perlin's 
noise; the rest of them are generated by GCTBF with five different combmatlons shown above. 

Original Perlin Pi F2Fz - FIF2 F, • Fl - FIFI F,F, - F3F3 + F2F2 - PiFI 
Figure 3: An example of creating bumps using GCTBF (the last four) The first is the original image 
without bumps; the second is the one with bumps generated by Perlin' s noise. 

Original octaves =0 octaves = 1 octaves = 2 octaves =3 octaves=4 

Figure 4: Sample images generated by using algorithm described in (6) with GCTBF =F2 - F; - F; F; . 
From left to right, the values of octaves used are 0, 1,2,3, and 4. The first is the original image. 

Perlin Pi PiF2 PiFz + F2F3 F2 - FI + PiPi Pi + F, + F2F3 - F,F, 

Figure 5: Sample cloud patterns (the last five) generated using the algorithm described in (7) using 

GCTBF with five different combinations shown above. The first pattern is generated by Perlin's noise. 

(a) (b) (c) 

Figure 6: An example of textured images using GCTBF 

162 



Xuejie Qin 

Perlin Fj F2 - FjFj F2F2 - FjFj F, • F, - F.F. FJFJ + FJF4 - F4F. 

Figure 2: An example of using GCTBF in color mapping. The first pattern is generated by Perlin's 
noise; the rest of them are generated by GCTBF with five different combmatlons shown above. 

Original Perlin Fj F2F2 - FjF2 F, • Fl - F,Fj F.F4 - FJFJ + F2F2 - FjFj 

Figure 3: An example of creating bumps using GCTBF (the last four) The first is the original image 
without bumps; the second is the one with bumps generated by Perhn· s nOise. 

Original oClaves=O oclaves= 1 octaves = 2 octaves = 3 oclaves=4 

Figure 4: Sample images generated by using algorithm described in (6) with GCTBF = F2 - F, - F,F, . 
From left to right, the values of octaves used are 0, I, 2, 3, and 4. The first is the original image. 

Perlin Fj FjF2 FjF2 + F2FJ F2 - Fj + FjFj Fj + F. + F2FJ - F.F. 

Figure 5: Sample cloud patterns (the last five) generated using the algorithm described in (7) using 

GCTBF with five different combinations shown above. The first pattern is generated by Perlin's noise. 

(a) (b) (c) 

Figure 6: An example of textured images using GCTBF 

162 


